Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589411

RESUMO

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Plasticidade Celular/genética , Multiômica , Evolução Clonal/genética
2.
J Cell Mol Med ; 28(6): e18223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451046

RESUMO

Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Reishi , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Esporos Fúngicos , Autofagia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
3.
Front Immunol ; 15: 1363454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487536

RESUMO

Pediatric hepatoblastoma (HB) is the most common primary liver malignancy in infants and children. With great diversity and plasticity, tumor-infiltrating neutrophils were one of the most determining factors for poor prognosis in many malignant tumors. In this study, through bulk RNA sequencing for sorted blood and tumor-infiltrated neutrophils and comparison of neutrophils in tumor and para-tumor tissue by single-cell sequencing, we found that intratumoral neutrophils were composed of heterogenous functional populations at different development stages. Our study showed that terminally differentiated neutrophils with active ferroptosis prevailed in tumor tissue, whereas, in para-tumor, pre-fate naïve neutrophils were dominant and ferroptotic neutrophils dispersed in a broad spectrum of cell maturation. Gene profiling and in vitro T-cell coculture experiment confirmed that one of main functional intratumoral neutrophils was mainly immunosuppressive, which relied on the activation of ferroptosis. Combining the bulk RNA-seq, scRNA-seq data, and immunochemistry staining of tumor samples, CXCL12/CXCR4 chemotaxis pathway was suggested to mediate the migration of neutrophils in tumors as CXCR4 highly expressed by intratumoral neutrophils and its ligand CXCL12 expressed much higher level in tumor than that in para-tumor. Moreover, our study pinpointed that infiltrated CXCR4hi neutrophils, regardless of their differential distribution of cell maturation status in HB tumor and para-tumor regions, were the genuine perpetrators for immune suppression. Our data characterized the ferroptosis-dependent immunosuppression energized by intratumoral CXCR4 expression neutrophils and suggest a potential cell target for cancer immunotherapies.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Lactente , Criança , Humanos , Neutrófilos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Transdução de Sinais , Quimiotaxia , Neoplasias Hepáticas/patologia , Receptores CXCR4/metabolismo
4.
Gene ; 908: 148292, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38369247

RESUMO

Hepatoblastoma (HB) is the most common malignant tumor in children under 5 years old, but its pathogenesis remains unclear. Nur77 has been reported to be an important regulator for cancer progression in various cancer types. This study found that Nur77 was downregulated in HB tumors, compared with paracancer tissue. Knockout or overexpression of Nur77 in HB tumor cell line HepG2 and HuH6 could significantly enhance or inhibit the proliferation, migration and invasion of tumor cells both in vitro and in vivo. Further studies illustrated that Nur77 regulated the proliferation of tumor cells by affecting the expression of ß-catenin. Nur77 agonist Csn-B effectively enhanced the therapeutic effect of cisplatin on HB tumors both in vitro and in vivo. This study confirms that Nur77 may act as an oncogene in HB tumors and mediate the progression of HB by inhibiting the expression of ß-catenin, which provides a new targeted therapy for the clinical treatment of HB patients; meanwhile, the combination of Nur77 agonist and cisplatin treatment may improve the chemotherapeutic efficacy of HB patients, which provides a new idea for the improvement of the clinical prognosis of HB patients.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Pré-Escolar , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
5.
BMJ Case Rep ; 17(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417945

RESUMO

Alagille syndrome (AGS) is a genetic disorder due to mutations in the JAGGED 1 or NOTCH 2 genes leading to multisystemic manifestations. Though these patients are at risk of developing various liver tumours, no cases of hepatoblastoma among young children with cirrhosis in AGS have been reported. We report a male toddler, with cirrhosis due to AGS who developed a hepatoblastoma. He underwent a liver transplant for decompensated chronic liver disease with marked pruritus, very high alpha-fetoprotein levels and malignant liver lesions on positron emission tomography CT. His explant histology revealed a paucity of bile ducts and liver lesions turned out to be hepatoblastoma for which he received postoperative chemotherapy. The genetic testing sent before transplantation confirmed the clinical diagnosis of AGS. Hepatoblastoma should be suspected in any child with AGS presenting with a right upper quadrant mass even in the setting of chronic liver disease.


Assuntos
Síndrome de Alagille , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Masculino , Lactente , Pré-Escolar , Síndrome de Alagille/complicações , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Hepatoblastoma/complicações , Hepatoblastoma/diagnóstico , Hepatoblastoma/genética , Tomografia Computadorizada por Raios X , Neoplasias Hepáticas/complicações , Cirrose Hepática/complicações
6.
Eur J Cancer ; 200: 113583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330765

RESUMO

BACKGROUND: Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS: All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS: High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS: Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Hepáticas/patologia , Mutação , Perfilação da Expressão Gênica
7.
Hepatol Commun ; 8(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285876

RESUMO

BACKGROUND AND AIMS: Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases. APPROACH: We have examined mechanisms of activation of key oncogenes in primary liver tumors and lung metastases and the role of these mechanisms in the appearance of metastasis-initiating cells in patients with aggressive HBL by RNA-Seq, immunostaining, chromatin immunoprecipitation, Real-Time Quantitative Reverse Transcription PCR and western blot approaches. Using a protocol that mimics the exit of metastasis-initiating cells from tumors, we generated 16 cell lines from liver tumors and 2 lines from lung metastases of patients with HBL. RESULTS: We found that primary HBL liver tumors have a dramatic elevation of neuron-like cells and cancer-associated fibroblasts and that these cells are released into the bloodstream of patients with HBL and found in lung metastases. In the primary liver tumors, the ph-S675-ß-catenin pathway activates the expression of markers of cancer-associated fibroblasts; while the ZBTB3-SRCAP pathway activates the expression of markers of neurons via cancer-enhancing genomic regions/aggressive liver cancer domains leading to a dramatic increase of cancer-associated fibroblasts and neuron-like cells. Studies of generated metastasis-initiating cells showed that these cells proliferate rapidly, engage in intense cell-cell interactions, and form tumor clusters. The inhibition of ß-catenin in HBL/lung metastases-released cells suppresses the formation of tumor clusters. CONCLUSIONS: The inhibition of the ß-catenin-cancer-enhancing genomic regions/aggressive liver cancer domains axis could be considered as a therapeutic approach to treat/prevent lung metastases in patients with HBL.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética
8.
Cancer Sci ; 115(3): 847-858, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183173

RESUMO

Achaete-scute family bHLH transcription factor 2 (ASCL2) is highly expressed in hepatoblastoma (HB) tissues, but its role remains unclear. Thus, biological changes in the HB cell line HepG2 in response to induced ASCL2 expression were assessed. ASCL2 expression was induced in HepG2 cells using the Tet-On 3G system, which includes doxycycline. Cell viability, proliferation activity, mobility, and stemness were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony-formation, migration, invasion, and sphere-formation assays. Quantitative reverse-transcription polymerase chain reaction was used to assess the expression of markers for proliferation (CCND1 and MYC), epithelial-mesenchymal transition (EMT; SNAI1, TWIST1, and ZEB1), mesenchymal-epithelial transition (CDH1), and stemness (KLF4, POU5F1, and SOX9). Compared with the non-induced HepG2 cells, cells with induced ASCL2 expression showed significant increases in viability, colony number, migration area (%), and sphere number on days 7, 14, 8, and 7, respectively, and invasion area (%) after 90 h. Furthermore, induction of ASCL2 expression significantly upregulated CCND1, MYC, POU5F1, SOX9, and KLF4 expression on days 2, 2, 3, 3, and 5, respectively, and increased the ratios of SNAI1, TWIST1, and ZEB1 to CDH1 on day 5. ASCL2 promoted the formation of malignant phenotypes in HepG2 cells, which may be correlated with the upregulation of the Wnt signaling pathway-, EMT-, and stemness-related genes. ASCL2 activation may therefore be involved in the progression of HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepatoblastoma/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética
9.
Hepatol Commun ; 8(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285887

RESUMO

BACKGROUND: As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS: Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS: We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS: The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cisplatino/farmacologia , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/antagonistas & inibidores
10.
Biochem Genet ; 62(1): 59-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37248373

RESUMO

Hepatoblastoma (HB) is a common primary liver malignant tumor in children. Long non-coding RNAs (lncRNAs) are closely engaged in HB progression. The role and regulatory molecule mechanism of lncRNA small nucleolar RNA host gene 1 (SNHG1) in HB remain unclear. Through qRT-PCR or western blot, we found that SNHG1 and proviral integration site for moloney murine leukemia virus 3 (PIM3) were elevated but miR-6838-5p was decreased in HB cells. Cell biology experiments revealed that SNHG1 depletion or miR-6838-5p upregulation suppressed cell proliferation, migration, and invasion of HB cells. Mechanistically, luciferase activity assay validated that miR-6838-5p could interact with SNHG1 or PIM3. SNHG1 up-regulated PIM3 expression via sponging miR-6838-5p. Moreover, miR-6838-5p inhibitor abolished SNHG1 depletion-mediated suppression of malignant behaviors in HB cells. PIM3 overexpression neutralized miR-6838-5p mimics-mediated repression of malignant phenotypes in HB cells. Furthermore, miR-6838-5p overexpression suppressed RhoA activation, which was restored by PIM3 upregulation. What's more, the results at the cellular level were further verified by nude mice tumor formation experiment. In conclusion, SNHG1 regulated miR-6838-5p/PIM3/RhoA axis to promote malignant phenotypes of HB, which might provide novel therapeutic target for HB treatment.


Assuntos
Hepatoblastoma , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Criança , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hepatoblastoma/genética , Camundongos Nus , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Serina-Treonina Quinases/genética
11.
Cell Mol Gastroenterol Hepatol ; 17(2): 175-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37866478

RESUMO

BACKGROUND & AIMS: Circ-CCT2 (hsa_circ_0000418) is a novel circular RNA that stems from the CCT2 gene. However, the expression of circ-CCT2 and its roles in hepatoblastoma are unknown. Our study aims to study the circ-CCT2 roles in hepatoblastoma development. METHODS: Hepatoblastoma specimens were collected for examining the expression of circ-CCT2, TAF15, and PTBP1. CCK-8 and colony formation assays were applied for cell proliferation analysis. Migratory and invasive capacities were evaluated through wound healing and Transwell assays. The interaction between circ-CCT2, TAF15, and PTBP1 was validated by fluorescence in situ hybridization, RNA pull-down, and RNA immunoprecipitation. SKL2001 was used as an agonist of the Wnt/ß-catenin pathway. A subcutaneous mouse model of hepatoblastoma was established for examining the function of circ-CCT2 in hepatoblastoma in vivo. RESULTS: Circ-CCT2 was significantly up-regulated in hepatoblastoma. Overexpression of circ-CCT2 activated Wnt/ß-catenin signaling and promoted hepatoblastoma progression, whereas knockdown of circ-CCT2 exerted opposite effects. Moreover, both TAF15 and PTBP1 were up-regulated in hepatoblastoma tissues and cells. TAF15 was positively correlated with the expression of circ-CCT2 and PTBP1 in hepatoblastoma. Furthermore, circ-CCT2 recruited and up-regulated TAF15 protein to stabilize PTBP1 mRNA and trigger Wnt/ß-catenin signaling in hepatoblastoma. Overexpression of TAF15 or PTBP1 reversed knockdown of circ-CCT2-mediated suppression of hepatoblastoma progression. SKL2001-mediated activation of Wnt/ß-catenin signaling reversed the anti-tumor effects of silencing of circ-CCT2, TAF15, or PTBP1. CONCLUSIONS: Circ-CCT2 stabilizes PTBP1 mRNA and activates Wnt/ß-catenin signaling through recruiting and up-regulating TAF15 protein, thus promoting hepatoblastoma progression. Our findings deepen the understanding of hepatoblastoma pathogenesis and suggest potential therapeutic targets.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Animais , Camundongos , Hepatoblastoma/genética , Hepatoblastoma/patologia , beta Catenina/genética , beta Catenina/metabolismo , RNA Mensageiro/genética , Hibridização in Situ Fluorescente , RNA/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
12.
Gene ; 897: 147991, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972697

RESUMO

Hepatoblastoma (HB) is an uncommon malignant liver cancer primarily affecting infants and children, characterized by the presence of tissue that resembling fetal hepatocytes, mature liver cells or bile duct cells. The primary symptom in affected children is abdominal lumps. HB constitutes approximately 28% of all liver tumors and two-thirds of liver malignancies in the pediatric and adolescent population. Despite its high prevalence, the underlying mechanism of HB pathogenesis remain largely unknown. To reveal the genetic alternations associated with HB, we conducted a comprehensive genomic study using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques on five HB patients. We aimed to use WGS to identify somatic variant loci associated with HB, including single nucleotide polymorphisms (SNPs), insertions and deletions (Indels), and copy number variations (CNVs). Notably, we found deleterious mutation in CTNNB1, AXIN2 and PARP1, previously implicated in HB. In addition, we discovered multiple novel genes potentially associated with HB, including BRCA2 and GPC3 which require further functional validation to reveal their contributions to HB development. Furthermore, the American College of Medical Genetics and Genomics (ACMG) analysis identified the ABCC2 gene was the pathogenic gene as a potential risk gene linked with HB. To study the gene expression patterns in HB, we performed RNA-seq analysis and qPCR validation to reveal differential expression of four candidate genes (IGF1R, METTL1, AXIN2 and TP53) in tumors compared to nonneoplastic liver tissue in HB patients (P-Val < 0.01). These findings shed lights on the molecular mechanisms underlying HB development and facilitate to advance future personalized diagnosis and therapeutic interventions of HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Lactente , Adolescente , Humanos , Criança , Hepatoblastoma/genética , Variações do Número de Cópias de DNA , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sequenciamento Completo do Genoma , Análise de Sequência de RNA , Glipicanas/genética
13.
Pediatr Blood Cancer ; 71(2): e30774, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990130

RESUMO

BACKGROUND: Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including ß-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS: We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with ß-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and ß-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS: EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with ß-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Gravidez , Feminino , Proteína Potenciadora do Homólogo 2 de Zeste/genética , beta Catenina/genética , beta Catenina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Hepatoblastoma/genética , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia
14.
Mod Pathol ; 37(2): 100385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992967

RESUMO

Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , alfa-Fetoproteínas , Genômica , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular
15.
J Cell Mol Med ; 28(1): e18006, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850543

RESUMO

Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, it is essential to identify pathogenic germline genetic variants, especially those in oncogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit (TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adenosine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting functions in several cancer types. However, the contribution of its genetic variants to hepatoblastoma remains unclear. In this study, we investigated the association between four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 healthy controls. Germline DNA was subjected to polymorphism genotyping via the TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 G > A and rs236110 C > A polymorphisms were significantly associated with hepatoblastoma risk. Combination analysis of the four polymorphisms revealed that children bearing 1-4 risk genotypes were at significantly enhanced hepatoblastoma risk compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19-1.95, p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. Ultimately, we found that the rs236110 C > A was significantly associated with the downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant further validation by extensive case-control studies across different ethnicities.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Estudos de Casos e Controles , Neoplasias Hepáticas/genética , Polimorfismo Genético , tRNA Metiltransferases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
16.
Hepatology ; 79(3): 650-665, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459556

RESUMO

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS: We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-ß cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-ß of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-ß. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS: Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.


Assuntos
Aflatoxinas , Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Fator de Crescimento Transformador beta , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição/genética , Fenótipo , Microambiente Tumoral
17.
Sci Rep ; 13(1): 21814, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071211

RESUMO

Metastasis of hepatoblastoma (HB) is a key factor that impairs the prognosis and treatment of children. The suppressor of cytokine signaling 2 (SOCS2) is a classical negative feedback protein that regulates cytokine signal transduction and has been known to be downregulated in several tumor, but the molecular mechanisms of its involvement in HB metastasis are unknown. We found that SOCS2 was a gene down-regulated in hepatoblastoma and associated with HB metastasis through bioinformatics. The qRT-PCR, Western blot and IHC showed that SOCS2 was significantly lower in HB tissues. Clinicopathological correlation analysis revealed that low expression of SOCS2 was significantly correlated with tumor metastasis (P = 0.046) and vascular invasion (P = 0.028), associated with poor prognosis. Overexpression of SOCS2 inhibited the migration and invasion of hepatoblastoma cells, while knockdown of SOCS2 expression promoted these malignant phenotypes. In vivo studies revealed overexpression of SOCS2 inhibited the formation of lung metastasis. Up-regulation of SOCS2 in HB cell inhibited EMT and JAK2/STAT5. Conversely, down-regulation of SOCS2 promoted EMT and JAK2/STAT5. The addition of the JAK2 inhibitor Fedratinib partially reversed the effects of si-SOCS2 on HB cells. SOCS2 may inhibit the migration and invasion of HB cells by inhibiting the JAK2/STAT5 signaling pathway. These results may provide guiding significance for the clinical treatment of HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Regulação para Baixo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Neoplasias Hepáticas/patologia , Citocinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
18.
Nat Commun ; 14(1): 7122, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932266

RESUMO

Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.


Assuntos
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Criança , Pré-Escolar , Hepatoblastoma/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patologia , Neoplasias Hepáticas/genética , Mosaicismo , Metilação de DNA , Impressão Genômica , Microambiente Tumoral
19.
Pediatr Surg Int ; 39(1): 275, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751001

RESUMO

PURPOSE: This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS: IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS: The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION: IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.


Assuntos
Hepatoblastoma , Interleucinas , Neoplasias Hepáticas , Humanos , Western Blotting , Comunicação Celular , Hepatoblastoma/genética , Interleucinas/genética , Neoplasias Hepáticas/genética
20.
Aging (Albany NY) ; 15(15): 7583-7592, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531210

RESUMO

N1-methyladenosine (m1A) is an essential chemical modification of RNA. Dysregulation of RNA m1A modification and m1A-related regulators is detected in several adult tumors. Whether aberrant RNA m1A modification is involved in hepatoblast carcinogenesis has not been reported. tRNA methyltransferase 61B (TRMT61B) is responsible for mitochondrial RNA m1A modification. Some evidence has shown that genetic variants of TRMT61B might contribute to cancer susceptibility; however, its roles in hepatoblastoma are unknown. This study attempted to discover novel hepatoblastoma susceptibility loci. With the TaqMan method, we examined genotypes of the TRMT61B rs4563180 G>C polymorphism among germline DNA samples from 313 cases and 1446 controls. The association of the rs4563180 G>C polymorphism with hepatoblastoma risk was estimated based on odds ratios (ORs) and 95% confidence intervals (CIs). We found that the TRMT61B rs4563180 G>C polymorphism correlated significantly with a reduction in hepatoblastoma risk (GC vs. GG: adjusted OR=0.65, 95% CI=0.49-0.85, P=0.002; GC/CC vs. GG: adjusted OR=0.66, 95% CI=0.51-0.85, P=0.002). In stratified analysis, significant associations were detected in children younger than 17 months old, girls, and subgroups with stage I+II or III+IV tumors. False-positive report probability analysis validated that children with the GC or CC genotype, particularly in those <17 months of age, had a decreased risk of hepatoblastoma. The rs4563180 G>C polymorphism also correlated with expression of TRMT61B and the nearby gene PPP1CB. We identified a high-quality biomarker measuring hepatoblastoma susceptibility, which may contribute to future screening programs.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Feminino , Humanos , Hepatoblastoma/genética , Predisposição Genética para Doença/genética , Estudos de Casos e Controles , RNA , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...